Thunderbolt PTP GM200

PTP Grandmaster designed for small cell, 4G and LTE-A deployments

Key Features

- **IEEE-1588 PTP Grandmaster Clock**
 - Multiple PTP Profiles (G.8265.1, G.8275.1, G.8275.2, Telecom-2008 Profile, 802.1AS, Enterprise Profile, Broadcast Profile SMPTE)
- **Multi-Constellation** (GPS, GLONASS, Beidou & Galileo)
- **15ns (1-sigma) time accuracy** relative to GNSS reference
- **Holdover of ±1.5us over 4hours** (constant temperature and when locked to GPS for 7 days)
- **Inputs:** GNSS, 1588-PTP and SyncE
- **Outputs:** 1588-PTP, NTP, SyncE, PPS, and 10MHz
- **Dedicated management port** (1xRJ45)
- **Network Management:** SNMP, Web UI, CLI
- **VLAN support**
- **IPv4 and IPv6**

Benefits

- Low cost reduces CAPEX of LTE TDD, LTE-A & small cell projects
- Extended environmental capabilities enable deployment in difficult locations where small cells and LTE-A base stations are deployed
- Superior holdover performance via Trimble proprietary technology gives extra time error budget for network design and dimensioning.

The Trimble Thunderbolt® PTP Grandmaster Clock is designed for wireless networks requiring phase synchronization. The GM200 provides continuous availability of UTC traceable time for phase synchronization, a must for LTE-Advanced networks and services. The Thunderbolt PTP GM200 employs industry leading Trimble GNSS solution & holdover technology.

The PTP GM200 can tolerate harsh environmental conditions supporting both indoors & outdoors deployments with extended operating temperature range.

Small cell phase synchronization

The Thunderbolt PTP GM200 is designed with small cells in mind but also it meets Marco base station requirements for synchronization.

The Thunderbolt PTP GM200 supports small cells networks that require phase synchronization. The most efficient way to implement phase synchronization for LTE & LTE-A services is to deploy the grandmaster clock close to target eNodeBs to ensure 1.5 us of phase alignment.

By reducing network hops between the grandmaster and LTE base stations, the risk of network re-configuration and load variance on IEEE-1588 signal quality is reduced. The Trimble GM200 suits this strategy perfectly due to its small size, low cost, superior accuracy & reliability and flexibility of deployment options.

Ideal for LTE-A services

CoMP, eICIC, eMBMS and Carrier Aggregation services require that synchronization networks be requalified and redesigned to support phase synchronization. Non-compliance with phase sync specifications will result in low or no service from LTE-A equipment and degraded bandwidth leading to potential service outages.

By engineering current networks to support phase synchronization, LTE-A services downtime can be mitigated. Phase synchronization can easily be supported by current sync networks with the GM200 by adding it where needed. Given its low cost, it can be added to any network requiring support for the stringent phase synchronization specifications that LTE-A services require performing at their optimal levels.

High reliability assures that the GM200 can be deployed in edge and/or aggregation networks.
GENERAL SPECIFICATIONS

Inputs: ..GNSS, 1588-PTP, SyncE
Outputs:PPS, 10MHz, NTP, PTP, SyncE
Ethernet Ports:
1x Mgmt RJ45
1x 1G SFP
1x 1G RJ45
Protocols: ..PTP, NTP & SyncE
GNSS Antenna ..SMA

Protocols:
IEEE-1588 (PTP), NTPv4, SyncE, IPv4, IPv6, TELNET, SFTP, SSH, RADIUS, TACACS+, SNMP, DAYTIME, TIME

Network ManagementSNMPv2, v3, HTTPS, CLI
User Interfaces:
CLI ..Monitoring and Management
Web UI ..Monitoring and Management

PERFORMANCE

Time of day accuracy15ns (1-sigma) reference GNSS
Time stamp accuracy<10 ns rms
Frequency accuracy1.6x10^-12 (one day ave.)
Holdover ..<1x10^-10/24hrs

Time accuracy
Tracking to GPS<15ns
Holdover<±1.5μs/4hrs (7 days locked)

Power consumption5W average, 10W maximum

PHYSICAL CHARACTERISTICS

Dimensions in cm (L x W x H):20.8 x 20 x 4.4
(19” half-rack x 1U)
Weight ..< 3Kg (6 lb)

POWER

DC Power, dual feed-36VDC to -72VDC
Current consumption330mA (max)

REGULATORY & STANDARDS

Operating Conditions
Temperature ...-40°C to +85°C
Humidity5%-95% RH non-condensing (+60°C)
Storage Temperature-5°C to +105°C

Safety & Health:
UL EN 62368-1
CE, CISPR32 class A
GR-63; Level 3
ETSI (EN55032/EN55024) EN 300019, Class T3.2

ElectricalEMC, ESD immunity & susceptibility
FCC Part 15 Class B / ICES 003 Class-B
Korea KN32 / KN35 Class A
EN301 489-1, EN 301 489-19 EN 303 413
IEEE ..1613-1
Telcordia ..GR-1089

Synchronization
ITU ...G.8265.x, G.8275.x (PRTC/T-GM)
IEEE ..PTP (IEEE 1588v2)
IETF ..NTPv4 (RFC5905)

Product Compliant with following directive:
2014/53/EU (RED Directive)
2011/65/EU (RoHS2 Directive)
2012/19/EU (WEEE Directive)

Visit www.trimble.com/timing for part numbers and information about where to buy.

Parts of the product are patent protected.

Trimble has relied on representations made by its suppliers in certifying this product as RoHS-II compliant.

Specifications are subject to change without notice.

Trimble Inc. is not responsible for the operation or failure of operation of GPS satellites or the availability of GPS satellite signal.